HTML Encode Online

Understanding HTML entities

HTML has reserved characters such as <, >, &, etc. In order to display those reserved characters as HTML content, the reserved characters should be replaced by so-called HTML entities.

HTML entities have two format as below.

  • &entityname;
  • &#entitynumber;

HTML entity number syntax can be either decimal format or hexdecimal format. That is, &#nnnn is decimal format and &#xhhhh is hexdecimal format where x is a prefix for hexdecimal number. HTML entity number refers to a character by its Unicode code point.

For example, to display less than (<) character, use either < by its entity name or &#60; (or &#x3c;) by its entity number.

While HTML entity number format can express all Unicode characters, there are limited number of HTML entity names. Consider a HTML entity name as alias for a certain Unicode character. Each HTML version has different number of HTML entity names. For example, HTML4 has a standard set of 252 HTML entity names. Please note that entity name is case sensitive.

The table below is the list of standard 252 HTML entity names and one extra entity called apos (apostrophe) in XHTML.

Character Entity name Entity number
'
apos
&#x0027;
"
quot
&#x0022;
&
amp
&#x0026;
<
lt
&#x003C;
>
gt
&#x003E;
 
nbsp
&#x00A0;
¡
iexcl
&#x00A1;
¢
cent
&#x00A2;
£
pound
&#x00A3;
¤
curren
&#x00A4;
¥
yen
&#x00A5;
¦
brvbar
&#x00A6;
§
sect
&#x00A7;
¨
uml
&#x00A8;
©
copy
&#x00A9;
ª
ordf
&#x00AA;
«
laquo
&#x00AB;
¬
not
&#x00AC;
­
shy
&#x00AD;
®
reg
&#x00AE;
¯
macr
&#x00AF;
°
deg
&#x00B0;
±
plusmn
&#x00B1;
²
sup2
&#x00B2;
³
sup3
&#x00B3;
´
acute
&#x00B4;
µ
micro
&#x00B5;
para
&#x00B6;
·
middot
&#x00B7;
¸
cedil
&#x00B8;
¹
sup1
&#x00B9;
º
ordm
&#x00BA;
»
raquo
&#x00BB;
¼
frac14
&#x00BC;
½
frac12
&#x00BD;
¾
frac34
&#x00BE;
¿
iquest
&#x00BF;
À
Agrave
&#x00C0;
Á
Aacute
&#x00C1;
Â
Acirc
&#x00C2;
Ã
Atilde
&#x00C3;
Ä
Auml
&#x00C4;
Å
Aring
&#x00C5;
Æ
AElig
&#x00C6;
Ç
Ccedil
&#x00C7;
È
Egrave
&#x00C8;
É
Eacute
&#x00C9;
Ê
Ecirc
&#x00CA;
Ë
Euml
&#x00CB;
Ì
Igrave
&#x00CC;
Í
Iacute
&#x00CD;
Î
Icirc
&#x00CE;
Ï
Iuml
&#x00CF;
Ð
ETH
&#x00D0;
Ñ
Ntilde
&#x00D1;
Ò
Ograve
&#x00D2;
Ó
Oacute
&#x00D3;
Ô
Ocirc
&#x00D4;
Õ
Otilde
&#x00D5;
Ö
Ouml
&#x00D6;
×
times
&#x00D7;
Ø
Oslash
&#x00D8;
Ù
Ugrave
&#x00D9;
Ú
Uacute
&#x00DA;
Û
Ucirc
&#x00DB;
Ü
Uuml
&#x00DC;
Ý
Yacute
&#x00DD;
Þ
THORN
&#x00DE;
ß
szlig
&#x00DF;
à
agrave
&#x00E0;
á
aacute
&#x00E1;
â
acirc
&#x00E2;
ã
atilde
&#x00E3;
ä
auml
&#x00E4;
å
aring
&#x00E5;
æ
aelig
&#x00E6;
ç
ccedil
&#x00E7;
è
egrave
&#x00E8;
é
eacute
&#x00E9;
ê
ecirc
&#x00EA;
ë
euml
&#x00EB;
ì
igrave
&#x00EC;
í
iacute
&#x00ED;
î
icirc
&#x00EE;
ï
iuml
&#x00EF;
ð
eth
&#x00F0;
ñ
ntilde
&#x00F1;
ò
ograve
&#x00F2;
ó
oacute
&#x00F3;
ô
ocirc
&#x00F4;
õ
otilde
&#x00F5;
ö
ouml
&#x00F6;
÷
divide
&#x00F7;
ø
oslash
&#x00F8;
ù
ugrave
&#x00F9;
ú
uacute
&#x00FA;
û
ucirc
&#x00FB;
ü
uuml
&#x00FC;
ý
yacute
&#x00FD;
þ
thorn
&#x00FE;
ÿ
yuml
&#x00FF;
Œ
OElig
&#x0152;
œ
oelig
&#x0153;
Š
Scaron
&#x0160;
š
scaron
&#x0161;
Ÿ
Yuml
&#x0178;
ƒ
fnof
&#x0192;
ˆ
circ
&#x02C6;
˜
tilde
&#x02DC;
Α
Alpha
&#x0391;
Β
Beta
&#x0392;
Γ
Gamma
&#x0393;
Δ
Delta
&#x0394;
Ε
Epsilon
&#x0395;
Ζ
Zeta
&#x0396;
Η
Eta
&#x0397;
Θ
Theta
&#x0398;
Ι
Iota
&#x0399;
Κ
Kappa
&#x039A;
Λ
Lambda
&#x039B;
Μ
Mu
&#x039C;
Ν
Nu
&#x039D;
Ξ
Xi
&#x039E;
Ο
Omicron
&#x039F;
Π
Pi
&#x03A0;
Ρ
Rho
&#x03A1;
Σ
Sigma
&#x03A3;
Τ
Tau
&#x03A4;
Υ
Upsilon
&#x03A5;
Φ
Phi
&#x03A6;
Χ
Chi
&#x03A7;
Ψ
Psi
&#x03A8;
Ω
Omega
&#x03A9;
α
alpha
&#x03B1;
β
beta
&#x03B2;
γ
gamma
&#x03B3;
δ
delta
&#x03B4;
ε
epsilon
&#x03B5;
ζ
zeta
&#x03B6;
η
eta
&#x03B7;
θ
theta
&#x03B8;
ι
iota
&#x03B9;
κ
kappa
&#x03BA;
λ
lambda
&#x03BB;
μ
mu
&#x03BC;
ν
nu
&#x03BD;
ξ
xi
&#x03BE;
ο
omicron
&#x03BF;
π
pi
&#x03C0;
ρ
rho
&#x03C1;
ς
sigmaf
&#x03C2;
σ
sigma
&#x03C3;
τ
tau
&#x03C4;
υ
upsilon
&#x03C5;
φ
phi
&#x03C6;
χ
chi
&#x03C7;
ψ
psi
&#x03C8;
ω
omega
&#x03C9;
ϑ
thetasym
&#x03D1;
ϒ
upsih
&#x03D2;
ϖ
piv
&#x03D6;
ensp
&#x2002;
emsp
&#x2003;
thinsp
&#x2009;
zwnj
&#x200C;
zwj
&#x200D;
lrm
&#x200E;
rlm
&#x200F;
ndash
&#x2013;
mdash
&#x2014;
lsquo
&#x2018;
rsquo
&#x2019;
sbquo
&#x201A;
ldquo
&#x201C;
rdquo
&#x201D;
bdquo
&#x201E;
dagger
&#x2020;
Dagger
&#x2021;
bull
&#x2022;
hellip
&#x2026;
permil
&#x2030;
prime
&#x2032;
Prime
&#x2033;
lsaquo
&#x2039;
rsaquo
&#x203A;
oline
&#x203E;
frasl
&#x2044;
euro
&#x20AC;
image
&#x2111;
weierp
&#x2118;
real
&#x211C;
trade
&#x2122;
alefsym
&#x2135;
larr
&#x2190;
uarr
&#x2191;
rarr
&#x2192;
darr
&#x2193;
harr
&#x2194;
crarr
&#x21B5;
lArr
&#x21D0;
uArr
&#x21D1;
rArr
&#x21D2;
dArr
&#x21D3;
hArr
&#x21D4;
forall
&#x2200;
part
&#x2202;
exist
&#x2203;
empty
&#x2205;
nabla
&#x2207;
isin
&#x2208;
notin
&#x2209;
ni
&#x220B;
prod
&#x220F;
sum
&#x2211;
minus
&#x2212;
lowast
&#x2217;
radic
&#x221A;
prop
&#x221D;
infin
&#x221E;
ang
&#x2220;
and
&#x2227;
or
&#x2228;
cap
&#x2229;
cup
&#x222A;
int
&#x222B;
there4
&#x2234;
sim
&#x223C;
cong
&#x2245;
asymp
&#x2248;
ne
&#x2260;
equiv
&#x2261;
le
&#x2264;
ge
&#x2265;
sub
&#x2282;
sup
&#x2283;
nsub
&#x2284;
sube
&#x2286;
supe
&#x2287;
oplus
&#x2295;
otimes
&#x2297;
perp
&#x22A5;
sdot
&#x22C5;
lceil
&#x2308;
rceil
&#x2309;
lfloor
&#x230A;
rfloor
&#x230B;
lang
&#x2329;
rang
&#x232A;
loz
&#x25CA;
spades
&#x2660;
clubs
&#x2663;
hearts
&#x2665;
diams
&#x2666;

Home